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The nonlinear, three-dimensional Euler equations can be reduced to a simple linear 
equation when the flow has helical symmetry and when the flow consists of a rigidly 
rotating basic part plus a Beltrami disturbance part (with vorticity proportional to 
velocity or a slight generalization of this). Solutions to this linear equation represent 
steadily rotating, non-axisymmetric waves of arbitrary amplitude. Exact solutions 
can be constructed in the case of flow in a straight pipe of circular cross-section. 
Analogous results are obtained for the incompressible, non-dissipative equations of 
magnetohydrodynamics. In addition to a rigidly rotating basic flow, there may exist 
a toroidal magnetic field varying linearly with radius. 

1. Introduction 
More than a century ago, Lord Kelvin (1880) examined the linear stability of 

rigidly rotating flow in a pipe. He found that it was possible to construct the 
eigenfunctions explicitly in terms of Bessel functions, and also provided a 
transcendental equation for the eigenvalues. This equation showed that all 
disturbances are neutrally stable. 

One of the results of this paper is that Kelvin’s eigenfunctions turn out to be exact 
solutions to the full, three-dimensional Euler equations. That is, disturbances of 
arbitrary amplitude, and exactly the same structure and frequency as Kelvin’s, solve 
the nonlinear Euler equations. 

Exact solutions, which are steadily rotating and of permanent form, can be 
constructed in very general pipe geometries. The only limitation is that both the pipe 
geometry and the encloged flow must have helical symmetry - for instance the pipe 
could have the shape of a corkscrew. 

These exact solutions are constructed from a simple, linear eigen-equation, which 
results from assuming helical symmetry and from decomposing the flow into a basic 
part in rigid rotation and a disturbance part satisfying a certain relationship between 
its vorticity and its velocity. In the simplest case, the vorticity is proportional to 
velocity, a condition referred to as ‘Beltrami’. But this may be generalized to 
requiring that the cross-product of the vorticity and the velocity be the gradient of 
a pressure-like quantity. Notably, the combined flow (basic plus disturbance) need 
not satisfy this constraint. 

Analogous results apply if we add a basic toroidal magnetic field varying linearly 
with radius, corresponding to a uniform axial current density. 

In the following section, the linear governing equation is derived and applied to 
the problem first investigated by Kelvin. In $3, analogous results are derived for 
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magnetohydrodynamics. Section 4 takes a brief look a t  the stability of some of these 
solutions, by direct numerical integration, and, in many cases, i t  is found that an 
explosive growth of vorticity occurs. Section 5 summarizes the results and outlines 
some possible ex tensions and applications. Remarks on the boundary conditions for 
arbitrary helical domains and on more general basic flows are reserved for Appendices 
A and B. 

2. Kelvin’s problem of rigid rotation 
Consider the motion of an inviscid, incompressible fluid in an infinite circular 

cylinder. Let a be the radius of the cylinder, and let there be a basic flow in rigid 
rotation about the axis of the cylinder a t  the rate SZ,. A rotating frame of reference 
is adopted in which the basic flow is a t  rest. 

Assume that the flow has helical symmetry (see Park, Monticello & White 1984; 
Landman 1990 and references therein). This means that the velocity, vorticity, and 
pressure fields do not vary in the vector direction h. h is referred to  as the ‘Beltrami 
vector’ and, in cylindrical coordinates ( r ,  0, z ) ,  it is defined by 

h = h2(ez - weo) (1) 

with h2 = (1 + E2r2)-l and E referred to as the ‘pitch ’ (note : h is not a unit vector). 
When E = 0, the flow is two-dimensional, and when E = a, i t  is axisymmetric. h is 
orthogonal to  the radial unit vector e,, and the cross product of h with e, defines a 
third orthogonal vector in the direction of 0 + ez = q5 : 

(2 )  

Helical symmetry means that h.V applied to any scalar function of r ,  q5, and time t 
is zero. 

Helical symmetry permits the following decomposition of the velocity and 
vorticity fields : 

eg = h-lh x e ,  = h(e,+Ere,), 

u = h x V $ + h v ,  (3a )  

( 3 b )  = h x Vx+ hg. 

This decomposition automatically satisfies V - u  = V - o  = 0 (one must use V - h  = 0 
and V x h = -2eh2h to verify this). Now, since w = V x u, we have x = - v  and 

1 a a$ 1 a2+ 

rh2ar( 3,) r2h2 
2’$ z -- rh - +-- = 5+2ch2v. (4) 

(The latter follows by direct manipulation, noting that V = e,a/ar+eg(rh)-’ a/aq5.) 
One can continue along these lines to obtain the nonlinear evolution equations for v 
and 5, but this is unnecessary at this stage. Instead, we impose the Beltrami 
condition 

w = -au, (5 )  

v = a$, 5 = -av = -a2$. (6 )  

where -a is a constant. Equating ( 3 b )  with --a times ( 3 a )  gives 

Hence (4) becomes a single equation for $, 

2’$ + (-a2 - 2 ~ ~ h ’ )  $ = 0. (7)  

The boundary conditions are given below. 
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N o  dynamics has been taken into account yet. For this, we turn to the full 
momentum and vorticity equations : 

t 1 au 
at 
- + o x  u+251, x u = -V -+~luIz-+52~r2 , 

( 8 b )  
a 0  
- + v x (0 x u)  = 251,. v u ,  
at 

where a, = QOe, ,  p is the pressure, and p is the uniform density. We next use 
o x u = 0 and h .  Vf = 0 for any f ( r ,  4, t ) .  Taking the scalar product of both equations 
with h and using (3a)  and ( 3 b ) ,  we find 

av 
at 

h2-+252,h . (eZxhxV$)  = 0, 

h2- = 252,h-(e,.V(hw)), 
at 

or a$ 
a4 
av 
34 

av 
-+2d2,-  = 0, 
at 

- -2d2,-  = 0. 
at 

From (6), these two equations are identical. They 

a$ 2c52 a$ 
at a a4 -O7 

-+2-- 

both yield 

whose general solution is $(r,cp) with cp = 4- (2s52,/a) t ;  or just a steadily rotating 
wave. All the dynamics are encapsulated in the time-shifted angular coordinate cp. 
The solution to the problem then comes solely from (7), with 4 replaced by cp (see (4)). 

To get the boundary conditions for $ in (7 ) ,  note that (3a)  implies that the radial, 
tangential, and axial velocity components in the cylindrical coordinate system are 
given by 

Requiring that the radial flow be finite at the origin and that there be no flow 
through the pipe wall, we have 

_ -  " - 0  a t  r = O , a .  
34 

Substituting cp for 0, (7) simply becomes an eigenproblem for +(r,cp). a is the 
eigenvalue. The exact solutions to ( 7 )  were found by realizing that they are identical 
to the linear solutions worked out by Kelvin. Hence, we immediately have 

$(r,cp) = d&(r)ei"q+c.c. (13) 
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where d is an arbitrary complex constant, and 

(14) EPr 
$ ( r )  = J m ( P r ) - T J m ( P r ) ,  

where ,u = (a' - m's');, and a is determined from the transcendental equation 

For example, when E = 0, aa = kjma ( J m ( j m a )  = 0 ) ,  and when e+ co, a/s++m. The 
corresponding velocity components, u, = d$,(r)exp (imp) +c.c.,, etc., using (6) and 
(11)  are 

4, = -im (16a) a 

These are exact, nonlinear solutions to  the three-dimensional Euler equations. 
It is also possible to obtain exact solutions for the flow between two concentric 

circular cylinders. These involve both J m  and the complementary Bessel function 

If two or more solutions to (7) share a common eigenvalue a, then an arbitrary 
superposition of these solutions is also an exact nonlinear solution of Euler 
equations. For Kelvin's problem, there is in fact always a second solution-an 
axisymmetric steady flow - given by (14) with m = 0, or 

ym. 

$ ( r )  = J,(ar) +srJ , (ar) ,  (17) 

a, = 0, ti0 = - a J , ( a r ) ,  = aJ, (ar) .  (18) 

whose corresponding velocity field is 

(For flow between two concentric circular cylinders, there is yet a third solution, also 
an axisymmetric steady flow, involving the Bessel functions Y, and q.) It is 
remarkable that the addition of this non-trivial axisymmetric flow, a t  any amplitude 
whatsoever, has no effect on either the temporal behaviour or the spatial structure 
of the non-axisymmetric part of the disturbance (16). 

A slightly more general problem arises if we relax the Beltrami condition (5) to 

o x u  =-vn, (19) 

where n is some scalar function (M. R. E. Proctor, personal communication). Using 
the expressions (3a) and (3b) for u and o and x = -v, (19) implies 

[h.  (V$ x VV)] h - h ' ( p $  + WVV) = - Vn ; 

hence, since V$ is perpendicular to h, we must have both v = v($), to  eliminate the 
component orthogonal to V$, and n = n($), to ensure that Vn is parallel to Q$. then 
(19) implies 

where a prime stands for functional differentiation with respect to  +. 
c = -  vv' +n'/h2,  (20) 
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We next have to satisfy (9a, b ) ,  which still apply when n + 0. Using v = v($) and 
5 from ( 2 0 ) ,  (9a,  b )  become 

v‘-+2€52,- a$ = 0, 
at a# 

Multiplying the first equation by -v’ and equating the coefficients of a$/at, we find 

or, since this must be true for arbitrary $, we conclude n“ = v“ = 0. Hence v’ and n’ 
are constants - that is v and n are linear functionals of $ - and once again we obtain 
the lincar equation (10). 

Without loss of generality, we may take v = a$ and n = n’$. Equation (20) then 

(21 )  
shows that 5 = -a2$ + n’/h2, 

differing from the expression in (6) by a term proportional to 1 + e2r2. Substituting 
these forms for 5 and v into (4), we finally obtain 

Thus, relaxing the Beltrami constraint has the single effect of changing (7) to  an 
inhomogeneous eigenvalue problem. 

For Kelvin’s problem, the solutions to  (22 )  are given by the solutions to  the 
homogeneous problem, (14) and (17), plus an additional axisymmetric, steady flow 
$ ( r ) .  This additional flow is necessarily axisymmetric on account of the boundary 
conditions (12 )  and the #-independent form of the inhomogeneous term in ( 2 2 ) .  One 

n”/h2-vv” = 0, 

2$ + (az - 2eah2) $ = n’/h2. (22 )  

can verify that 

does indeed satisfy ( 2 2 ) .  The corresponding velocity field is 

n’w 77‘ 

a a2 
ii,=o, ti,=-- , zi, = - ( a + 2 e ) ,  

which is simply a rigid rotation plus a uniform axial flow. The most such a flow could 
be expected to do is alter the rotational frequencies of the disturbances, but it does 
not do even this. The more general condition (19), therefore, adds little freedom to 
the solutions. 

3. Results for magnetohydrodynamics 
The equations of magnetohydrodynamics (MHD) can similarly be reduced to a 

linear equation when the basic flow is sufficiently simple and when the disturbance 
flow is Beltrami. 

Let (pop)iB be the magnetic field. Here p0 is the magnetic permeability and p is 
the (uniform) fluid density. The current density is given by (p ,p); j ,  with j = V x B. 
The governing equations of incompressible, non-diffusive MHD can be written 

aB -+ V x (B x U) = 0 
at 
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(see e.g. Craik 1988; Moffatt 1989). We split the velocity and magnetic fields into a 
basic part and a Beltrami disturbance part : 

a$ 
a$ 
w 
a# 

av 

a$ 

h-2h.(e, x u)  = e--, ’ 
h-2h. (uxre , )  =--, 

h-2h.[V x (e, x u)] = -e-, 

av 
hP2h.[V x (u x re,)] = -, 

a$ 
ac h-2h.{V x [V x (u x re,)]} = -. 
a# I 

u + 0, re, + u ; w + 2 0 ,  e, + w ,  

B+ &,re,+ B ;  j +  29 ,  e, +j,  

t 

with w = -au-pB, 

j = - yu-&B, 
B = C U ,  

where all of the coefficients are constant. Taking the curl of (26c) and using (26a)  and 
(26b) ,  we get 

We obtain one more condition on the coefficients by eliminating the disturbance 
nonlinearity from the left-hand side of (24a) ;  this gives 

y =ac,  s = p c .  

p = -7.  

Hence, defining di = a+pc  = a(l--C2), (27 1 
we see from (26a,  b ,  c )  that w = -diu, j = c o .  (28) 

Decomposing u and w into helical variables as before (see (3a, b )  and ( 4 ) ) ,  we obtain 
(6 )  and ( 7 )  with di in place of a. The spatial structure equation is therefore the same 
as in the case of the Euler equations.? 

I n  order to get the temporal behaviour of the solution, we must work with 
(24a,  b)  (after substituting the fields given in (25 ) ) .  The Beltrami constraints reduce 
(24a,b)  to 

au 
at 
-+ 2Q0 e, x u + 0 ,  o x re,+ Qo re, x j +  2Q, B x e, = - Vn, 

B+Q,v x (re, x u ) + a , v  x ( ~ x  re,) = 0. (29b) at 

We obtain the evolution equation for $ by taking the scalar product of (29a,  b )  and 
their curls with h. All these equations must give the same evolution for $. We make 
use of the following results for any pair of vectors u and w decomposed into helical 
variables (u and w satisfy (3a,  b )  and ( 4 ) )  : 

t We similarly obtain the inhomogeneous equation (22) in place of (7) if we relax the Beltrami 
conditions (26) to w x u+ B x j = - V R  and B x u = VT (see end of $2). Consistency requires r = 
constant, which implies B = cu, and R = R’$, where IT’ is a specified constant. 
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Then, using B = cu, v = &I) and 5 = -Z21), (29a) and its curl both ultimately reduce 
to 

at 

while (296) and its curl both reduce to 

Consistency then requires that the coefficients of a$/a$ match, and from this we 
obtain c for a prescribed flow (Do, Q,) : 

c = {$$$y+l+q}/(l+;). (33) 

There are two roots, implying that there are two disturbance magnetic field strengths 
consistent with linear evolution (for a given eigenvalue a). When the pitch B = 0, 
c = f 1, so the solutions correspond to  ‘Elsasser’ solutions (see Moffatt 1989). When 
e = 00, the two roots are c = 0 and c = Qo/Qo.  

In  summary, the inclusion of a magnetic field changes only the frequency of 
rotation of the solutions. The spatial structure of the solutions is still determined 
from the eigen-equation (7) or (22), the solutions to  which are unchanged by the 
presence of a magnetic field. 

4. A few remarks on stability 
In  this section, direct numerical simulations are used to examine the interaction 

of two superposed exact solutions, as a first, qualitative look a t  the stability of these 
solutions. The calculations are performed assuming small pitch, E < 1, or flows which 
twist gradually with height. The case of small pitch is interesting not only because 
the resulting governing equations are simple, but because it is possible to compute 
on a long timescale T = ~ t ,  and the results apply irrespective of an enclosing 
cylindrical boundary. That is, one obtains the results for a contained and a free 
vortex simultaneously. One drawback is that  the results apply only to  weakly 
nonlinear situations, when the vorticity is only slightly perturbed from its uniform 
value in rigid rotation. 

We first derive the governing equations for small pitch. Assume for now that the 
flow is contained within a cylinder of unit radius, so that the pitch e is a dimensionless 
small parameter. Beginning with the full three-dimensional Euler equations in 
cylindrical coordinates ( r ,  0, z ) ,  with density p = 1, 
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suppose we try the expansion 

u, = eurl(r,p), 7 )  +e2Urz(r,pl, 7 )  + . .., 
u , = ~ + e ~ ~ ~ ( r , p ) , ~ ) + ~ ~ u ~ , ~ r . ~ ) , 7 ) +  ..., 

u, = euZI(r,v, 7 )  +e%,,(r,pl, 7 )  + ..., 
p = &r' + ep l ( r ,  pl,7) + ezp,(r, pl, 7 )  + . . . , 

where 7 = et and v = e-it + ez, a rotating helical coordinate. The basic flow is simply 
rigid rotation having axial vorticity unity, and the coordinate rp allows us to move 
into a frame of reference rotating with this flow. Note that, for any function f ( r , o ,  
z ,  t ) ,  we have 

Hence, the combination af/at + r-'uOi3f/a0 appearing in (34a-c) is equal to 
e(3f/i3~+r-~u,, af/+) + O(e2). At O(E), then, ( 3 4 4  gives 

or simply 

At O(e2), (34a-d)  gives 

lap2 - +ur,+-- - 0, 
r %  

- + Url - +--+- a7 ar r +  r 
a u O l  a u O l  U O l a U O l  ur1u81 

Solving for uOz and u,, from (35a)  and (35b) ,  and substituting into (35d) ,  we get the 
standard two-dimensional vorticity equation with an important additional term 
representing the effects of vortex stretching. Define 

Then, the axial vorticity equation and the axial momentum equation (35c)  provide 
a consistent set of reduced equations for the O(E) fields: 
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The weak pitch form of the Navier-Stokes equations follows almost immediately. 
If v is the coefficient of viscosity, and if we define D = v / e ,  we find the right-hand sides 
of ( 3 6 a )  and (36b)  are supplemented by the terms DV2[ and DV2w, respectively. 

We next examine the boundary conditions (for the inviscid problem). A t  the 
origin, the radial velocity must be finite, so, at  O(s) ,  a$-/+ must be zero there. At  the 
external boundary, supposing at first that it is a rigid circular cylinder, we would 
have a$/+ = 0 there also. These two boundary conditions are sufficient to invert 
Laplace’s equation for $ in terms of {. 

But suppose the external boundary is free; i.e. it separates rotational interior fluid 
from irrotational exterior fluid. We then have that each velocity component must be 
continuous across the boundary r = R(cp,r), and that fluid particles along the 
boundary must move with the local fluid velocity there. 

The outer fields are expanded in the same way as the inner fields, except ue starts 
with &-l and p starts with a-g-2. The continuity equation at O(s)  implies that 

a$ uel = - 
ar 

1 a$ 
r + ’  

Ur1 = 

for some as yet undetermined function $. Irrotationality gives three conditions, one 
for each component of the vorticity. The vertical component gives V2$ = 0, at  O(e) ,  
while the azimuthal and axial components give au,,/ar = 0 and au,,/&p = 0. Hence, 
uZ1 is uniform in the external region. Next, we ensure continuity of the velocity fields 
across the boundary. We assume that the boundary has the expansion 

R = 1+ERl(cp,r)+e2R2(cp,r)+ .... (37)  

Then continuity of ur, at O ( E ) ,  requires continuity of a$,/+ at  r = 1. Continuity of 
u,, being careful to note that the basic flow differs in each region, requires 

Finally, continuity of u, requires that the interior field u,, = w be independent of cp 
along r = I .  The last condition to employ is the dynamical one : 

D 
- (r-R(cp, 7 ) )  = 0. 
Dt 

Here, Dr/Dt = u, = curl + O(e2). 

However, DR/D~ = S y a ~ , / a 7  + t--luol aRl/&p) + 0(€3) ; 
therefore, a t  O ( E ) ,  the dynamical condition requires that the radial velocity vanish at 
r = 1, that is, a$/$( I ,  q, 7 )  = 0. Here, $ refers to either $(in) or $(Out). Immediately, 
we can then conclude that the boundary conditions for the interior problem, at O(E) ,  
are the same as if the boundary were a rigid circular cylinder. 

But we can go further by obtaining, diagnostically, the boundary deformation at 
O(a),  i.e. R,. Consider the solution to Laplace’s equation in the exterior. It has the 
general form 

+ = c $,(r)r-meimV+c.c, 

where the $m are coFplex. But the boundary conpition that a$/+ = 0 at r = 1 
shows that all of the $m are zero except, trivially, $o. Hence, a$/ar = 0 a t  r = 1 as 

co 

m-0 



534 D. G. llritschel 

well, and indeed $ is uniform throughout the external region. We can then use (38) 
to  determine R, in terms of the interior flow $(in) = $: 

In other words, R,(rp, T )  = - uol ( 1 ,  rp, 7). 
A numerical code was written following the guidelines of Landman (1990), who 

developed a code for the full helical equations. The code uses second-order finite 
differences in the radial direction, with equally spaced radii, and a finite Fourier 
expansion in the azimuthal direction. There are 129 radial intervals and 129 
azimuthal wavenumbers, the latter ranging from - 64 to 64. Nonlinear products are 
calculated in physical space, with the aid of fast Fourier transforms to exchange 
spectral fields and real fields. A small amount of diffusion is included purely to 
stabilize the code - the no-slip boundary condition at r = 1 is not imposed. I n  its 
place, we require that the second radial derivative of all fields vanish a t  r = 1. The 
coefficient of diffusion D is set to  AT+)^, where Ar = &. The time integration begins 
with a second-order Runga-Kutta step and continues with second-order Adams- 
Bashforth steps. However, if the peak vorticity doubles some prescribed value, 
the time step is halved, and the calculation restarts with a Runge-Kutta step. Each 
successive vorticity doubling is dealt with in the same way. The initial time step is 
A7 = 0.001. 

The exact, steadily-rotating, non-axisymmetric solutions provide a convenient 
check on the accuracy of the code. With the type of diffusion employed, these 
solutions simply slowly decay while retaining the same spatial structure and 
rotational frequency. A test calculation beginning with the m = 1 solution 
(a = +jll), for instance, proves to be indistinguishable from the exact solution up to 
7 = 25. 

We turn next to the evolution of superposed solutions. The notation SQ, [,$ + d2 [z 
is used to denote the initial condition 

<(r,rp,O) = j , , ~ ~ J , ( j , , r ) e i m p r + j , , f ~ J n ( j n l r )  einp+c.c., 
w(r,rp,O) = + f l J m ( j ~ l r ) e i ~ ~ ~ f z J , ( j , , r ) e i n ~ + ~ . ~ . ,  

whereAfl and 4, are complex constants in general. Figure 1 shows the evolution of 
0.209[~+0.052~.  By 7 = 25, the vorticity has begun to  intensify markedly. The 
intensification occurs predominantly in regions of large axial velocity gradients 
(aw/apl fuels <), and the vorticity takes on a multiple sheet-like structure. The 
eventual arrest of vorticity growth in the thin structures is largely attributable to 
inviscid mechanisms, with diffusion playing only a minor role. Note that w itself 
does not intensify significantly. This is because w-$-." is materially conserved (in the 
absence of diffusion). Numerous other calculations exhibit the same sequence of 
events: an initial twisting of the < and w fields, followed by an intensification of 6 
along gradients of w, with thin, rapidly intensifying, closely spaced ridges and 
troughs of vorticity. A sec9nd example, havil;lg a qualitatively different evolution, is 
given in figure 2, for - 0.g: +0.039& (note : <: is an axisymmetric flow). At first, two 
symmetrical centres of vorticity develop ; then these rapidly intensify and thin, 
forming spiralling sheet-like structures. Unlike in the previous example, the axial 
velocity field manages to develop near discontinuities and in this way fuels an 
explosive growth in vorticity. The growth in peak vorticity is very great, being 
super-exponential a t  late times. 
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7 = 0  7 = 5  7 =  10 

7 = 25 7 = 20 

FIUURE 1.  The evolution of 0.209k+O.O52i;. Time increases to the right. The top frames show C 
and the bottom frames w, contoured at intervals of 0.2 and 0.05, respectively. Positive values are 
contoured with solid lines, negative values with dashed lines, and the zero contour with dotted 
lines. 

5. Discussion 
This paper has shown that a helically symmetric flow composed of a basic part in 

rigid rotation and a disturbance part whose vorticity is proportional to  its velocity 
satisfies a simple, linear eigen-equation. Solutions to this equation exactly satisfy the 
three-dimensional, nonlinear Euler equations and are therefore valid for arbitrary 
amplitude. Remarkably, the solutions for flow in a straight pipe of circular cross- 



536 D .  G .  Dritschel 

r = o  r = 4  r = 6  

I 

r = l  r = 8  r = 9  

FIQURE 2. The evolution of -0.=+0.039[;. The contour intervals in [ and w are 0.4 and 0.1 
respectively. The average values of these fields have been subtracted, but this does not affect the 
dynamics. 

section turn out to  be the eigenfunctions worked out by Kelvin (1880) in his linear 
stability analysis of rigid rotation. 

The disturbance vorticity and velocity need not even be parallel as long as the 
cross-product of these two fields is proportional to the gradient of the disturbance 
streamfunction. The resulting eigen-equation is then supplemented by an 
inhomogeneous term. 

Parallel results hold for MHD. In addition to a basic rigid rotation, there may exist 
a uniform current density directed along the axis of rotation. The solutions to the 
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linear MHD equation have precisely the same spatial structure as found for the linear 
Euler equation. The magnetic field simply alters the frequencies of the solutions. 

These exact solutions appear to be distinct from those constructed by Craik (1988), 
whose solutions take the form of plane waves with simple spatial structure, and from 
those constructed by Squire (1956), whose axisymmetric solutions do not possess 
helical symmetry. They also provide examples of flows with non-trivial topology (see 
Moffatt 1989 for general remarks). Viscous effects cannot be easily included, 
although i t  may be possible to patch these solutions into boundary layers for small 
viscosity. 

Numerical calculations indicate that many of these solutions are unstable, in the 
full, nonlinear sense, a t  least in the limit of small pitch. In  real flows, these solutions 
may therefore never occur, or only appear in transition from one unsteady flow to 
another. On the other hand, effects which have not been included here, for example 
finite pitch or stratification, may bring about stability. Finite pitch has the effect of 
bringing into force additional terms in the vorticity equation (see (B 1 b)  in Appendix 
B) which did not enter into the weakly nonlinear equations modelled in $4, and these 
additional terms may lead to significantly different flow structures, if not stability. 
The effects of weak axial stratification may also bring about stabilization, since 
buoyancy tends to suppress axial motions. These possibilities are under active 
investigation. 

Another idea is to examine the special subclass of helical flows characterized by 
constant v in the non-rotating frame of reference. Such flows materially conserve the 
quantity q = h2g (as one can verify from ( B l a , b )  in Appendix B). Thus, if q were 
initially piecewise-constant in a flow, i t  would remain piecewise-constant, and 
furthermore, the boundaries across which q jumps would uniquely determine the 
velocity field everywhere. It is thus possible to develop a Lagrangian model for the 
motion of the q-discontinuity contours, thereby enabling one to  examine the 
evolution of complex, nonlinear helical flows. I n  two extreme cases, this model has 
already seen extensive application : in the limit of zero pitch (two-dimensional flow), 
the model reduces to  ‘contour dynamics’ (Zabusky, Hughes & Roberts 1979; 
Dritschel 1989 and references therein) ; in the limit of infinite pitch (axisymmetric 
flow), a modified form of contour dynamics also results (Pozrikidis 1986; Shariff, 
Leonard & Ferzinger 1989). In general, the model relies on being able to find Greeen’s 
function for the operator h264 (see (4)). For two-dimensional flow, Green’s function 
reduces to the logarithm of the distance between two points, while for axisymmetric 
flow, it reduces to  a combination of complete elliptic integrals of the first and second 
kind (Shariff et al. 1989). For the intermediate range of pitch, it has not yet been 
possible to find a closed-form expression for Green’s function, and there is some 
doubt that one exists. In  any case, there is a wide range of phenomena open to 
exploration using this model, such as steadily rotating nonlinear waves on a vortex 
column, or multiple, corrotating vortices ; the stability of these equilibria both to 
irrotational and rotational disturbances (non-uniform v for example) ; and the 
nonlinear dynamics of interacting vortices, just to name a few possibilities. 

The instability depicted in figure 2 may have application to  a certain curious 
phenomenon sometimes observed in atmospheric vortices. It is observed that 
tornadoes can break up into multiple vortices, helically intertwined about a common 
centre of rotation and of significantly greater intensity than the parent tornado (see, 
for example, Fujita 1970; Agee et al. 1977). Experimental work has also captured 
what appears to be the same phenomenon (Ward 1972; Church et al. 1979). Yet, a 
complete understanding of this phenomenon is still outstanding. 
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One idea is that multiple vortices are preceded by thc formation of a ‘ breakdown 
bubble ’, a transition along the parent vortex column from supercritical to subcritical 
flow (see Benjamin 1962 for a precise definition of these terms). Observational 
evidence for this is noted by Pauley & Snow (1987) and Lugt (1989). The flow feeding 
into a tornado near the ground is typically supercritical, often turning to subcritical 
further up the vortex column (or the entire vortex column may become subcritical 
in cases when the breakdown bubble reaches the ground). If we consider Benjamin’s 
(1962) theory of vortex breakdown, for the special case of a supercritical Rankine 
flow (rigid rotation and uniform axial velocity), then there exists a family of 
associated subcritical columnar vortex flows with non-uniform axial velocity 
parameterized by the closeness of the supercritical flow to criticality. The case of a 
marginally supercritical flow formed the example illustrated in figure 2. We can 
conclude that the associated subcritical flow is unstable to non-axisymmetric 
disturbances, and, importantly, develops structures reminiscent of multiple vortices 
in tornadoes. The numerical and observational results may be brought into closer 
correspondence, it is believed, by using the full helical equations (finite pitch) and 
weak stratification. A more complete account will be forthcoming in a future paper. 

I would like to thank G. Brunet, A. A. D. Craik, W. V. R. Malkus, H. K. Moffatt, 
T. J. Pedley and M. R. E. Proctor for their helpful comments and suggestions. 

Appendix A. More general helical domains 
In  this Appendix, boundary conditions are derived for domains asymmetrically 

distributed about the axis of rotation, yet retaining a three-dimensional helical 
structure. These allow one to construct exact nonlinear solutions in curved pipes, e.g. 
an infinitely extended corkscrew, or a pipe with an elliptical cross-section. 

First, it is necessary to  adopt a frame of reference in which both the domain 
boundary and the enclosed flow appear steady. The rotation rate of this frame of 
reference, say 52, generally differs from the rotation rate of the basic flow, 52,. To find 
52 in terms of a,, we must manipulate the momentum and vorticity equations (8a, 
b )  as in $2 to produce a linear evolution equation like (10). However, (8a,  b )  apply 
only when 52 = 52,, but they can be amended easily by replacing u by u+ (52,-52) re, 
and w by w+2(52,-i2)eZ. This has the ultimate effect of altering (10) to 

thus, the solution will be steady if we choose 

52 = Qo(1+2). 

Now, in this frame of reference, there will be a residual rotation equal to 
Q,-Q = -22~Q,/u which will generally have a non-zero normal component on the 
boundary. This will force an inhomogeneous boundary condition for @ since the total 
normal component of the flow must vanish. 

Suppose that the boundary is given by r = R(q5). Then the radial velocity of a 
particle on the boundary must be directly compensated by the radial flow there, 
or 
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Expanding the material derivative of R,  in the rotating frame of reference, and using 
the definition of u, from (1  1 a ) ,  (A 3 )  may be written 

Now, since # = O + m ,  then D#/Dt = r-lu,+eu, = r-la$/ar. Hence, (A 4) can be 
rewritten 

If the origin is included in the domain, a$/a# = 0 there as before. 

Appendix B. More general basic flows 
In this appendix, it is proved that no other basic flow reduces the helically 

symmetric Euler equations to a linear equation. We must now consider the full 
nonlinear helical equations (see Landman 1990 and references therein). These are 
obtained, after a considerable amount of algebra, by taking the scalar product of ( 8 a )  
and (86) with h and using ( 3 a )  and (3b) .  Suppose for the moment that u includes both 
the basic flow and the disturbance. Then, in a non-rotating frame of reference, the 
helical equations are 

aw 
-++($, w) = 0, 
at 

where 

The effect of a background rigid rotation in a frame of reference rotating with this 
basic flow is to add the terms - 2~52, a$/a# and 2~52, awlaq5 to the right-hand sides 
of (B la )  and (B 1 b ) ,  respectively. So, for this basic flow, we can immediately see that 
w = a$ and C = -a2$+n'/h2 collapse (B 1 a )  and (B 1 b)  into a single linear equation 
for $, namely (10). 

In the more general case, we suppose the flow to be divided into an imposed basic 
part U(r, #, t )  and a disturbance part u(r, 4, t ) ,  the latter satisfying the extended 
Beltrami constraint o x u = -n'V$. In the helical equations above, we replace $ by 
Y ( r ,  #, t )  + $(r,  q5, t ) ,  21 by V(r,  #, t )  + a$.(., 6, t )  and 5 by z(r, 9, t )  - a 2 $ ( T ,  #, t )  + n'/h2. 
Here, V and 2 are the imposed basic flow quantities (they are linked to Y through 
the obvious analogue of (4)), $ is the disturbance stream function, and the extended 
Beltrami constraint on the disturbance has already been used. Inserting these fields 
into (B l a )  and (B l b ) ,  we find after further multiplying (B l a )  by -a 

1 all. a 
( aq5 a# 

-a2-++($, a$ Z+a2!P) = 2eh2 J($ ,  V-aY)  --s(Z+aV) --€a$- (V-  aY) 
at 

- -+J(Y ,2 ) -2sh2  J(!P,V)--s  V-+2-- . {E [ ( :; 311 
18 FLM 222 
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Both are equations for the evolution of $. To be consistent, they must be identical, 
and this requires the coefficients of a$/ar, a$/a$, $, and 1 to  match, or 

a a a 
a$ a$ a$ 
- ( V -  a!?’) + - (2 + a2Y) - 2Sh2 - ( V -  aY) = 0, 

a a 
a - ( V - a Y ) + - ( Z + a 2 Y ) - 2 ~ h 2  

ar ar 

a 
a$ 

a-(V-aY) = 0: 

a 
- ( Z + C ~ V ) + J ( Y , Z + L X V ) - ~ S ~ ~  
at 

Equation (B 3 c )  implies that I/-aY is independent of $ which, in conjunction with 
(B 3a) ,  implies that Z+a2Y is also independent of @. Let, therefore, 

A(r ,  t )  = V - a Y ,  B(r,  t )  = Z+aV (B 4% b )  

(note Z+a2Y = R - d ) .  Expressed another way, 

V = A+aY’ ,  2 = ( R - d - n ’ / h 2 ) - a 2 Y + n ’ / h 2 ,  

which is to say that although V and Z can depend on $, they can do so only by way 
of an extcnded Beltrami flow having the same constant of proportionality a. Since 
$ is already assumed to be such a flow, we can incorporate the $-varying part of Y 
into $ and so consider Y ,  and hence V and Z, independent of $. 

Now (B 3b)  gives 

and with this, (B 3 d )  gives simply 

- _  - 0. 
i3B 
at 

Hence, from (B 5), aA/ar is also independent of time, and in fact i t  is sufficient to  
choose A as a function of r alone. Equation (B 5 )  gives a non-trivial constraint on the 
basic flow, now only a function of radius r. It can be rewritten as 

dA 
dr  dr  
- = 2Eh4 - , 
dh2B 

and when combined with the analogue of (4) for the basic flow, 

$ $ ( r h 2 3  = Z+2eh2V, 

we see from the definitions A = V - a Y  and B = Z+aV that we are apparently free 
to choose one of the fields, say Y ( r ) ,  and determine the other two from (B 6) and 
(B 7). For example, rigid rotation corresponds to 

!P = $2,r2; V = -d.2,r2; Z = 2 8 , .  (B 8) 



Generalized helical Reltrami jiows 54 1 

For arbitrary !P(r), however, the disturbance evolution equation, (B 2a) or (B 2b), 
reduces to 

whose general solution is +(r,  $-a-l(r-ldA/dr)t). If this is inserted into (7), we find 
that an explicit dependence on t cannot be eliminated, unless r-ldA/dr is constant. 
But then the basic flow is just rigid rotation. Hence, rigid rotation is the only basic 
flow that is consistent with linear disturbance evolution. 
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